第376章 磁化靶聚变(1/2)
“彭院士通过往洞里注射氩气、液态钠,让液态钠吸收聚变产生的热量,然后拿去烧开水发电,每天炸那么几颗氢弹,就能利用这些热量发出大量的电。”
“大家千万别觉得离谱,实际上以我们的工程能力和技术,这个方案理论上完全可以实现,只不过这个方案还是过于简单粗暴了点。”
“它虽然不需要消耗大量的能量来维持核聚变,但能量的转换效率比较低,会浪费大量的核燃料,除非可控核聚变的其他路线都被堵死了,同时能源问题非常严峻,否则大概率不会采用这个方案。”
“不过全球的科学家也一直在通过继续缩小反应装置,激光点火之类的方法,来优化核爆聚变电站惯性约束方案。”
“现在惯性约束装置的方案非常多,结构也千奇百怪,但它本质上的工程结构原理,大家都非常熟悉,那就是汽车上的内燃机!”
“只不过它换了一种燃料,同时相较于内燃机,它需要极高的能量密度和精确的对称性来实现压缩,工程、材料等技术难度非常大。。”
介绍完惯性约束后,康驰又放出了一张图。
“了解完惯性约束和磁约束后,磁化靶聚变大家应该就很容易理解了,这种结合了磁约束和惯性约束的聚变装置,最早是由枫叶国的科学家提出来的,图片上的就是通用聚变公司最初的磁化靶聚变原型机。”
“它其实就是在球形托卡马克装置外面,加了一圈蒸汽锤,通过蒸汽锤推动球体里面的液态金属,对装置内的氘氚等离子体进行加压,从而达到发生聚变反应的条件。”
“同时聚变反应也会产生中子,中子又能够与液态金属中的锂发生反应,生成更多的氚,从而达到聚变反应不断延续的目的。”
“这个设计看起来很完美,但其实还有很多问题。”
“最大的问题,就是液态金属不好控制,它在装置里面像水一样,很难让它均匀铺开,然后压缩等离子体。”
“为了解决这個问题,通用聚变公司设计了第二代装置,把球形托卡马克换成了圆柱形,让它转动起来产生离心力,于是液态金属就均匀地铺满了四壁。”
“这样不但可以让液态金属更均匀地压缩等离子体,蒸汽锤的速度也不再那么苛刻,这可以大幅度地提高整个装置的能效比。”
听到这里,立即有个女学生举手提问道:“这种聚变的点火方式不是要把压力集中到一个点吗?圆柱体加压的话,最后不是成了一个柱子,分摊了压力吗?”
听到这个问题后,康驰不禁满意地点了点头,
看来还是有学生在听的同时也在思考的……
“其实很简单。”
康驰直接放出了下一张图片。
“这就是他们的二代装置劳森机器-26,他们通过控制程序,让两极的活塞速度快一点,中间的慢一点,就能实现接近球状的压缩了。”
那个提问的女生顿时恍然大悟,
只觉得科学家的脑子,是真的是好使……
随后她又追问到:“既然枫叶国在磁化靶聚变的技术路线上,暂时处于领先的位置,您又看好这个路线……”
“那您觉得他们有可能成为第一个让可控核聚变,达到商业化程度的国家吗?如果我们要在这个路线上追赶的话,有可能赶得上他们吗?”
康驰听后忍不住问了句:“你是新闻系的学生?”
女孩有些不好意思地笑了笑。
难怪了,
这问题一听就很有炒作的噱头,
而问出这种问题,基本上算是新闻记者的职业本能了……
“很抱歉,我不是预言家。”康驰用不带任何情绪的语气说道,“科研本身也带有点运气成分,所以这个问题我也不能给出准确的答复。”
“其实不管是什么样的方案,在设计之初的时候,大家可能都觉得是完美的,但只有通过真正的实验之后,才能得到最终的答案,而通常来说,实验都是充满意外和挑战的。”
“磁化靶聚变也是一样的,它是最近几年才兴起的聚变装置,我认为它仍有许多理论和工程技术问题需要解决。”
“目前通用聚变公司的二代机还在建造中,如果他们进展足够顺利,真的按照计划在走的话,今年年底就能实现超过1亿的聚变点火,明年达到科学能量的盈亏平衡,也就是1的值。”
“而他们的最终目标,是每次压缩等离子体耗费14兆的能量,并产生704兆焦的能量输出,也就是5.9的值。”
“如果他们真的成功了,那确实够勉强达到初步商用化的标准……只能说祝他们好运吧。”
接下来康驰又回答了几个学生的提问,这堂公开课终于缓缓的落下了帷幕。
视频结束后,钟维坚依然呆呆地握着手机,
他沉思了足足好几分钟后,才深深地叹了口气道:“磁化靶聚变的工程难度,绝对不是1+1这么简单,不过……”
“这似乎才符
本章未完,请翻下一页继续阅读.........